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Abstract

This paper addresses the problem of creating visual
memories of salient objects arising in a certain unknown
environment and the ability of recalling them at a later time.
We adopt a developmental approach, i.e., we start with low
complexity and coarse information that is incrementally re-
fined to create a hierarchy of visual representations for the
observed scenes. Colour histogram-based measurements
provide a simple and quick methodology to bootstrap the
creation of visual memories. Experiments performed on the
humanoid platform iCub illustrate how this technique can
successfully create concepts by grouping related images to-
gether in clusters, subject to a similarity threshold.

1. Introduction

Personal Robotic Assistants will be deployed in public
and private settings in the near future, having to deal with
dynamic and uncertain information. In particular, they must
perceive –visually or by other means– the relevant objects
and places of their environment. While some amount of pre-
programming can be added to provide these robots with the
ability to detect certain common objects (e.g., faces, cars,
doors, tables), it is not possible to predict all the situations
that the robot will have to deal with in complex conditions.
Thus, developmental robotics approaches are studying the
problem of how robots can incrementally acquire knowl-
edge, relying solely on observations and self-experiences
obtained in situ [2].

Our work is developed on the humanoid robot plat-
form iCub1, where the specification of an Auto-Associative
Memory (Episodic Memory) is under development 2. Such
a memory operates as follows: (i) when an image is pre-
sented to the memory, it attempts to recall that image with
vision algorithms; (ii) if a previously-stored image matches

1http://www.robotcub.org/
2http://eris.liralab.it/wiki/Auto-associative

Memory Specification, written by D. Vernon [5].

Figure 1. Experiment with threshold = 0.8,
with two of the obtained clusters displayed.

the presented image sufficiently well, then the stored image
is recalled and displayed; (iii) if no previously-stored image
matches sufficiently well, then the presented image is stored
in the database.

The whole process is controlled by a parameter that es-
tablishes the required matching degree to associate two im-
ages.

In this paper we study how this simple methodology
can provide desirable properties in the creation and remem-
brance of relevant visual memories. We consider that the
robot does not know about anything at first. It is then at-
tracted by highly-salient parts of the scene using bottom-up
attentional mechanisms with colour filters [3]. Due to the
initial lack of knowledge, the system must create a small,
non-specific set of visual memory classes, in order to limit
system complexity. With time, once “first degree” memo-
ries are stable, the system must start distinguishing from im-
ages of the same class and incrementally create less abstract
representation of objects. We study how controlling the



matching degree parameter of the above-mentioned Auto-
Associative Memory influences the size of the created mem-
ories and the ability of developmentally growing hierarchi-
cal representations.

2. Related Work

A powerful algorithm used in visual object recognition
is Scale-Invariant Feature Transform (SIFT). Figueira [1]
applied it to cognitive robotics, implementing the spatial
model surrounding a humanoid iCub robot with the aim of
identifying salient objects which the robot encounters and
memorizes during its visual exploration, treating said ob-
jects as clusters of SIFT features.

However, using SIFTs to address the recognition task of
objects has two shortcomings. First, for objects to be effec-
tively characterized and recognized with this method, they
need to have highly-textured external surfaces (for instance,
a uniformly yellow cuboid would not be correctly matched,
but a package of breakfast cereal would). Secondly, another
assumption is that the facets of the objects to treat be planar
and non-rigid; so, the head of a person yawing in front of
the camera from various perspectives would not be correctly
matched, despite having a textured surface.

Colour histogram-based algorithms, on the other hand,
are flexible but not very selective, resulting in abstract cate-
gorization: the two images in the bottom row of Fig. 1 are
considered as members of the same class, even though they
depict different people.

3. Proposed Approach

To compare a pair of images in the visual memory, we
use a Histogram Intersection technique [4] that returns the
value

H(I, M) =

∑n
j=1 min(Ij , Mj)∑n

j=1 Mj
(1)

where I and M are the two histograms (“input” and candi-
date “model”), each with n bins. A histogram intersection∑n

j=1 min(Ij , Mj) is defined as the number of pixels of
the same colour in the image. Because of the division by
the number of pixel in the M histogram, the value of H is
normalized between 0 and 1.

Within this framework we will study two main issues:

1. which saliency criteria to use for the selection of can-
didate images to store in the visual memory: since we
are using colour-based distance metrics, highly satu-
rated colours imply high salience;

2. how a single threshold on the categorization distance
can be modulated to create hierarchical class represen-
tations: in order to form a new class, an image must

be distinct from all the other images that are already
present in the memory.

As far as computational complexity of histogram inter-
section is concerned, it is linear in the number of elements
in the histograms. In our current implementation we only
consider the Hue and Saturation components in HSV/HSI
colour image representations, resulting in 16×16 histogram
bins that are computed nearly in real time on a modern com-
puter that receives images from the iCub cameras (Point-
Grey Dragonfly 2, 640× 480 pixels, 30 frames per second).

4. Results and Conclusions

An evaluation of the performance allows us to observe
different behaviours shown by the classifier: a low threshold
parameter implies generalized object preference (few new
images are saved, i.e., at the end of exploration experiments
there is a low number of clusters). On the other hand, if the
threshold grows towards 1.0, a specific object preference is
shown by the robot memory (high number of saved images,
i.e., high number of clusters with unary cardinality).

Figure 2. Exploring an empty laboratory with
threshold = 0.7 resulted in 5 image clusters
being saved before stabilizing the system.
Such a low number of classes was expected,
given the rather uniform colours in the envi-
ronment.



Table 1. Number of image clusters saved
while exploring an empty laboratory environ-
ment, with varying values of the threshold.

threshold ≤ 0.4 0.5 0.6 0.7 0.8 0.9 0.95
# images 1 2 3 5 8 9 40

Figure 3. Cluster of plants obtained with a
threshold value of 0.5.

Initially, we let the iCub explore its everyday environ-
ment, an empty laboratory, with different threshold values.
Results in terms of number of saved image clusters that
were obtained are listed in Table 1, while Fig. 2 shows all
the classes acquired in one of these tests.

Other experiments consisted of several objects, people
and scenarios presented in front of the iCub head. Each
time a sufficiently salient and distinct image was detected,
a new class was added to the memory. In order to obtain
sensible clustering, we needed to use a rather low threshold,
as shown is Fig. 3 and Fig. 4. Failure to do so –that is, using
a higher threshold– would create too many distinct image
classes that in reality represent the same concept, which we
want to capture with our cognitive memory.

To conclude, we propose a technique to implement vi-
sual cognitive memories. The presented results show how
the system can successfully create concepts by grouping re-
lated images together. Most importantly, it can do so in real
time and starting from zero built-in knowledge. However,
initializing and controlling the threshold parameter is criti-
cal, and this should be subject to future investigation.

Furthermore, issues like keeping memory size within
limits with very large image databases, implementing
a multi-layer hierarchical representation, controlling the
branching factor, and testing different visual saliency ap-

Figure 4. Cluster of faces, all grouped to-
gether, obtained with a threshold value of 0.5.

proaches will be subject to future work.
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